Guide to Computer Forensics and Investigations
Fourth Edition

Chapter 5
Processing Crime and Incident Scenes
Objectives

- Explain the rules for digital evidence
- Describe how to collect evidence at private-sector incident scenes
- Explain guidelines for processing law enforcement crime scenes
- List the steps in preparing for an evidence search
- Describe how to secure a computer incident or crime scene
Objectives (continued)

• Explain guidelines for seizing digital evidence at the scene
• List procedures for storing digital evidence
• Explain how to obtain a digital hash
• Review a case to identify requirements and plan your investigation
Identifying Digital Evidence

• Digital evidence
  – Can be any information stored or transmitted in digital form
• U.S. courts accept digital evidence as physical evidence
  – Digital data is a tangible object
• Some require that all digital evidence be printed out to be presented in court
Identifying Digital Evidence (continued)

• General tasks investigators perform when working with digital evidence:
  – Identify digital information or artifacts that can be used as evidence
  – Collect, preserve, and document evidence
  – Analyze, identify, and organize evidence
  – Rebuild evidence or repeat a situation to verify that the results can be reproduced reliably

• Collecting computers and processing a criminal or incident scene must be done systematically
Understanding Rules of Evidence

• Consistent practices help verify your work and enhance your credibility
• Comply with your state’s rules of evidence or with the Federal Rules of Evidence
• Evidence admitted in a criminal case can be used in a civil suit, and vice versa
• Keep current on the latest rulings and directives on collecting, processing, storing, and admitting digital evidence
Understanding Rules of Evidence (continued)

- Data you discover from a forensic examination falls under your state’s rules of evidence
  - Or the Federal Rules of Evidence
- Digital evidence is unlike other physical evidence because it can be changed more easily
  - The only way to detect these changes is to compare the original data with a duplicate
- Most federal courts have interpreted computer records as hearsay evidence
  - Hearsay is secondhand or indirect evidence
Understanding Rules of Evidence (continued)

- Business-record exception
  - Allows “records of regularly conducted activity,” such as business memos, reports, records, or data compilations
- Generally, computer records are considered admissible if they qualify as a business record
- Computer records are usually divided into:
  - Computer-generated records
  - Computer-stored records
Understanding Rules of Evidence (continued)

- Computer records must be shown to be authentic and trustworthy
  - To be admitted into court
- Computer-generated records are considered authentic
  - If the program that created the output is functioning correctly
- Collecting evidence according to the proper steps of evidence control helps ensure that the computer evidence is authentic
Understanding Rules of Evidence (continued)

• When attorneys challenge digital evidence
  – Often they raise the issue of whether computer-generated records were altered
    • Or damaged after they were created
• One test to prove that computer-stored records are authentic is to demonstrate that a specific person created the records
  – The author of a Microsoft Word document can be identified by using file metadata
Figure 5-1  Selecting a document

Guide to Computer Forensics and Investigations
Figure 5-2  Viewing file metadata
Understanding Rules of Evidence (continued)

• The process of establishing digital evidence’s trustworthiness originated with written documents and the best evidence rule

• Best evidence rule states:
  – To prove the content of a written document, recording, or photograph, ordinarily the original writing, recording, or photograph is required

• Federal Rules of Evidence
  – Allow a duplicate instead of originals when it is produced by the same impression as the original
Understanding Rules of Evidence (continued)

• As long as bit-stream copies of data are created and maintained properly
  – The copies can be admitted in court, although they aren’t considered best evidence
Collecting Evidence in Private-Sector Incident Scenes

• Private-sector organizations include:
  – Businesses and government agencies that aren’t involved in law enforcement

• Agencies must comply with state public disclosure and federal Freedom of Information Act (FOIA) laws
  – And make certain documents available as public records

• FOIA allows citizens to request copies of public documents created by federal agencies
Collecting Evidence in Private-Sector Incident Scenes (continued)

- A special category of private-sector businesses includes ISPs and other communication companies.
- ISPs can investigate computer abuse committed by their employees, but not by customers.
  - Except for activities that are deemed to create an emergency situation.
- Investigating and controlling computer incident scenes in the corporate environment.
  - Much easier than in the criminal environment.
  - Incident scene is often a workplace.
Collecting Evidence in Private-Sector Incident Scenes (continued)

• Typically, businesses have inventory databases of computer hardware and software
  – Help identify the computer forensics tools needed to analyze a policy violation
    • And the best way to conduct the analysis

• Corporate policy statement about misuse of computing assets
  – Allows corporate investigators to conduct covert surveillance with little or no cause
  – And access company systems without a warrant
Collecting Evidence in Private-Sector Incident Scenes (continued)

• Companies should display a warning banner or publish a policy
  – Stating that they reserve the right to inspect computing assets at will

• Corporate investigators should know under what circumstances they can examine an employee’s computer
  – Every organization must have a well-defined process describing when an investigation can be initiated
Collecting Evidence in Private-Sector Incident Scenes (continued)

- If a corporate investigator finds that an employee is committing or has committed a crime
  - Employer can file a criminal complaint with the police
- Employers are usually interested in enforcing company policy
  - Not seeking out and prosecuting employees
- Corporate investigators are, therefore, primarily concerned with protecting company assets
Collecting Evidence in Private-Sector Incident Scenes (continued)

• If you discover evidence of a crime during a company policy investigation
  – Determine whether the incident meets the elements of criminal law
  – Inform management of the incident
  – Stop your investigation to make sure you don’t violate Fourth Amendment restrictions on obtaining evidence
  – Work with the corporate attorney to write an affidavit confirming your findings
Processing Law Enforcement Crime Scenes

• You must be familiar with criminal rules of search and seizure
• You should also understand how a search warrant works and what to do when you process one
• Law enforcement officer may search for and seize criminal evidence only with *probable cause*
  – Facts or circumstances that lead a reasonable person to believe a crime has been committed or is about to be committed
Processing Law Enforcement Crime Scenes (continued)

• With probable cause, a police officer can obtain a search warrant from a judge
  – That authorizes a search and seizure of specific evidence related to the criminal complaint

• The Fourth Amendment states that only warrants “particularly describing the place to be searched, and the persons or things to be seized” can be issued
Figure 5-4  Sample search warrant wording for computer evidence
Understanding Concepts and Terms Used in Warrants

• **Innocent information**
  – Unrelated information
  – Often included with the evidence you’re trying to recover

• Judges often issue a **limiting phrase** to the warrant
  – Allows the police to separate innocent information from evidence
Understanding Concepts and Terms Used in Warrants (continued)

- **Plain view doctrine**
  - Objects falling in plain view of an officer who has the right to be in position to have that view
    - Are subject to seizure without a warrant and may be introduced in evidence
- “**Knock and announce**”
  - With few exceptions, warrants require that officers knock and announce their identity
    - When executing a warrant
Preparing for a Search

• Preparing for a computer search and seizure
  – Probably the most important step in computing investigations

• To perform these tasks
  – You might need to get answers from the victim and an informant
    • Who could be a police detective assigned to the case, a law enforcement witness, or a manager or coworker of the person of interest to the investigation
Identifying the Nature of the Case

- When you’re assigned a computing investigation case
  - Start by identifying the nature of the case
    - Including whether it involves the private or public sector
- The nature of the case dictates how you proceed
  - And what types of assets or resources you need to use in the investigation
Identifying the Type of Computing System

• For law enforcement
  – This step might be difficult because the crime scene isn’t controlled

• If you can identify the computing system
  – Estimate the size of the drive on the suspect’s computer
    • And how many computers to process at the scene

• Determine which OSs and hardware are involved
Determining Whether You Can Seize a Computer

• The type of case and location of the evidence
  – Determine whether you can remove computers
• Law enforcement investigators need a warrant to remove computers from a crime scene
  – And transport them to a lab
• If removing the computers will irreparably harm a business
  – The computers should not be taken offsite
Determining Whether You Can Seize a Computer (continued)

• An additional complication is files stored offsite that are accessed remotely
• If you aren’t allowed to take the computers to your lab
  – Determine the resources you need to acquire digital evidence and which tools can speed data acquisition
Obtaining a Detailed Description of the Location

- Get as much information as you can
- Identify potential hazards
  - Interact with your HAZMAT team
- HAZMAT guidelines
  - Put the target drive in a special HAZMAT bag
  - HAZMAT technician can decontaminate the bag
  - Check for high temperatures
Determining Who Is in Charge

- Corporate computing investigations
  - Require only one person to respond
- Law enforcement agencies
  - Handle large-scale investigations
  - Designate lead investigators
Using Additional Technical Expertise

• Look for specialists
  – OSs
  – RAID servers
  – Databases

• Finding the right person can be a challenge

• Educate specialists in investigative techniques
  – Prevent evidence damage
Determining the Tools You Need

• Prepare tools using incident and crime scene information
• Initial-response field kit
  – Lightweight
  – Easy to transport
• Extensive-response field kit
  – Includes all tools you can afford
Figure 5-5  Items in an initial-response field kit
### Table 5-1  Tools in an initial-response field kit

<table>
<thead>
<tr>
<th>Number needed</th>
<th>Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Small computer toolkit</td>
</tr>
<tr>
<td>1</td>
<td>Large-capacity drive</td>
</tr>
<tr>
<td>1</td>
<td>IDE ribbon cable (ATA-33 or ATA-100)</td>
</tr>
<tr>
<td>1</td>
<td>SATA cable</td>
</tr>
<tr>
<td>1</td>
<td>Forensic boot media containing your preferred acquisition utility</td>
</tr>
<tr>
<td>1</td>
<td>Laptop IDE 40- to 44-pin adapter, other adapter cables</td>
</tr>
<tr>
<td>1</td>
<td>Laptop computer</td>
</tr>
<tr>
<td>1</td>
<td>FireWire or USB dual write-protect external bay</td>
</tr>
<tr>
<td>1</td>
<td>Flashlight</td>
</tr>
<tr>
<td>1</td>
<td>Digital or 35mm camera with film and flash</td>
</tr>
<tr>
<td>10</td>
<td>Evidence log forms</td>
</tr>
<tr>
<td>1</td>
<td>Notebook or dictation recorder</td>
</tr>
<tr>
<td>10</td>
<td>Computer evidence bags (antistatic bags)</td>
</tr>
<tr>
<td>20</td>
<td>Evidence labels, tape, and tags</td>
</tr>
<tr>
<td>1</td>
<td>Permanent ink marker</td>
</tr>
<tr>
<td>10</td>
<td>External USB devices, such as a thumb drive, or a larger portable hard drive</td>
</tr>
<tr>
<td>Number needed</td>
<td>Tools</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
</tr>
<tr>
<td>Varies</td>
<td>Assorted technical manuals, ranging from OS references to forensic analysis guides</td>
</tr>
<tr>
<td>1</td>
<td>Initial-response field kit</td>
</tr>
<tr>
<td>1</td>
<td>Portable PC with SCSI card for DLT tape drive or suspect’s SCSI drive</td>
</tr>
<tr>
<td>2</td>
<td>Electrical power strips</td>
</tr>
<tr>
<td>1</td>
<td>Additional hand tools, including bolt cutters, pry bar, and hacksaw</td>
</tr>
<tr>
<td>1</td>
<td>Leather gloves and disposable latex gloves (assorted sizes)</td>
</tr>
<tr>
<td>1</td>
<td>Hand truck and luggage cart</td>
</tr>
<tr>
<td>10</td>
<td>Large garbage bags and large cardboard boxes with packaging tape</td>
</tr>
<tr>
<td>1</td>
<td>Rubber bands of assorted sizes</td>
</tr>
<tr>
<td>1</td>
<td>Magnifying glass</td>
</tr>
<tr>
<td>1</td>
<td>Ream of printer paper</td>
</tr>
<tr>
<td>1</td>
<td>Small brush for cleaning dust from suspect’s interior CPU cabinet</td>
</tr>
<tr>
<td>10</td>
<td>USB thumb drives of varying sizes</td>
</tr>
<tr>
<td>2</td>
<td>External hard drives (200 GB or larger) with power cables</td>
</tr>
<tr>
<td>Assorted</td>
<td>Converter cables</td>
</tr>
<tr>
<td>5</td>
<td>Additional assorted hard drives for data acquisition</td>
</tr>
</tbody>
</table>
Preparing the Investigation Team

• Review facts, plans, and objectives with the investigation team you have assembled
• Goals of scene processing
  – Collect evidence
  – Secure evidence
• Slow response can cause digital evidence to be lost
Securing a Computer Incident or Crime Scene

• Goals
  – Preserve the evidence
  – Keep information confidential

• Define a secure perimeter
  – Use yellow barrier tape
  – Legal authority

• Professional curiosity can destroy evidence
  – Involves police officers and other professionals who aren’t part of the crime scene processing team
Seizing Digital Evidence at the Scene

• Law enforcement can seize evidence
  – With a proper warrant
• Corporate investigators rarely can seize evidence
• When seizing computer evidence in criminal investigations
  – Follow U.S. DoJ standards for seizing digital data
• Civil investigations follow same rules
  – Require less documentation though
• Consult with your attorney for extra guidelines
Preparing to Acquire Digital Evidence

• The evidence you acquire at the scene depends on the nature of the case
  – And the alleged crime or violation

• Ask your supervisor or senior forensics examiner in your organization the following questions:
  – Do you need to take the entire computer and all peripherals and media in the immediate area?
  – How are you going to protect the computer and media while transporting them to your lab?
  – Is the computer powered on when you arrive?
Preparing to Acquire Digital Evidence (continued)

- Ask your supervisor or senior forensics examiner in your organization the following questions (continued):
  - Is the suspect you’re investigating in the immediate area of the computer?
  - Is it possible the suspect damaged or destroyed the computer, peripherals, or media?
  - Will you have to separate the suspect from the computer?
Processing an Incident or Crime Scene

• Guidelines
  – Keep a journal to document your activities
  – Secure the scene
    • Be professional and courteous with onlookers
    • Remove people who are not part of the investigation
  – Take video and still recordings of the area around the computer
    • Pay attention to details
  – Sketch the incident or crime scene
  – Check computers as soon as possible
Processing an Incident or Crime Scene (continued)

• Guidelines (continued)
  – Don’t cut electrical power to a running system unless it’s an older Windows 9x or MS-DOS system
  – Save data from current applications as safely as possible
  – Record all active windows or shell sessions
  – Make notes of everything you do when copying data from a live suspect computer
  – Close applications and shut down the computer
Processing an Incident or Crime Scene (continued)

• Guidelines (continued)
  – Bag and tag the evidence, following these steps:
    • Assign one person to collect and log all evidence
    • Tag all evidence you collect with the current date and time, serial numbers or unique features, make and model, and the name of the person who collected it
    • Maintain two separate logs of collected evidence
    • Maintain constant control of the collected evidence and the crime or incident scene
Processing an Incident or Crime Scene (continued)

• Guidelines (continued)
  – Look for information related to the investigation
    • Passwords, passphrases, PINs, bank accounts
  – Collect documentation and media related to the investigation
    • Hardware, software, backup media, documentation, manuals
Processing Data Centers with RAID Systems

• Sparse acquisition
  – Technique for extracting evidence from large systems
  – Extracts only data related to evidence for your case from allocated files
    • And minimizes how much data you need to analyze
• Drawback of this technique
  – It doesn’t recover data in free or slack space
Using a Technical Advisor

• Technical advisor
  – Can help you list the tools you need to process the incident or crime scene
  – Person guiding you about where to locate data and helping you extract log records
    • Or other evidence from large RAID servers
  – Can help create the search warrant by itemizing what you need for the warrant
Using a Technical Advisor (continued)

• Responsibilities
  – Know aspects of the seized system
  – Direct investigator handling sensitive material
  – Help secure the scene
  – Help document the planning strategy
  – Conduct ad hoc trainings
  – Document activities
Documenting Evidence in the Lab

- Record your activities and findings as you work
  - Maintain a journal to record the steps you take as you process evidence
- Goal is to be able to reproduce the same results
  - When you or another investigator repeat the steps you took to collect evidence
- A journal serves as a reference that documents the methods you used to process digital evidence
Processing and Handling Digital Evidence

• Maintain the integrity of digital evidence in the lab
  – As you do when collecting it in the field
• Steps to create image files:
  – Copy all image files to a large drive
  – Start your forensics tool to analyze the evidence
  – Run an MD5 or SHA-1 hashing algorithm on the image files to get a digital hash
  – Secure the original media in an evidence locker
Storing Digital Evidence

• The media you use to store digital evidence usually depends on how long you need to keep it

• CD-Rs or DVDs
  – The ideal media
  – Capacity: up to 17 GB
  – Lifespan: 2 to 5 years

• Magnetic tapes
  – Capacity: 40 to 72 GB
  – Lifespan: 30 years
  – Costs: drive: $400 to $800; tape: $40
Storing Digital Evidence (continued)

Figure 5-6  4-mm DAT and DLT tape drives
Evidence Retention and Media Storage Needs

• To help maintain the chain of custody for digital evidence
  – Restrict access to lab and evidence storage area
• Lab should have a sign-in roster for all visitors
  – Maintain logs for a period based on legal requirements
• You might need to retain evidence indefinitely
  – Check with your local prosecuting attorney’s office or state laws to make sure you’re in compliance
Evidence Retention and Media Storage Needs (continued)

<table>
<thead>
<tr>
<th>Item description:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Item tag number:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Person</th>
<th>Date logged out</th>
<th>Time logged out</th>
<th>Date logged in</th>
<th>Time logged in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Figure 5-7  A sample log file*
Documenting Evidence

• Create or use an evidence custody form
• An evidence custody form serves the following functions:
  – Identifies the evidence
  – Identifies who has handled the evidence
  – Lists dates and times the evidence was handled
• You can add more information to your form
  – Such as a section listing MD5 and SHA-1 hash values
Documenting Evidence (continued)

• Include any detailed information you might need to reference
• Evidence bags also include labels or evidence forms you can use to document your evidence
Obtaining a Digital Hash

- **Cyclic Redundancy Check (CRC)**
  - Mathematical algorithm that determines whether a file’s contents have changed
  - Most recent version is CRC-32
  - Not considered a forensic hashing algorithm

- **Message Digest 5 (MD5)**
  - Mathematical formula that translates a file into a hexadecimal code value, or a hash value
  - If a bit or byte in the file changes, it alters the digital hash
Obtaining a Digital Hash (continued)

• Three rules for forensic hashes:
  – You can’t predict the hash value of a file or device
  – No two hash values can be the same
  – If anything changes in the file or device, the hash value must change

• **Secure Hash Algorithm version 1 (SHA-1)**
  – A newer hashing algorithm
  – Developed by the National Institute of Standards and Technology (NIST)
Obtaining a Digital Hash (continued)

• In both MD5 and SHA-1, collisions have occurred
• Most computer forensics hashing needs can be satisfied with a *nonkeyed hash set*
  – A unique hash number generated by a software tool, such as the Linux md5sum command
• **Keyed hash set**
  – Created by an encryption utility’s secret key
• You can use the MD5 function in FTK Imager to obtain the digital signature of a file
  – Or an entire drive
Obtaining a Digital Hash (continued)

![Drive/Image Verify Results]

<table>
<thead>
<tr>
<th>General</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>E:1</td>
</tr>
<tr>
<td>Sector count</td>
<td>252192</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MD5 Hash</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Computed hash</td>
<td>3dca4843535dab04c9e4ddf12d46348c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SHA1 Hash</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Computed hash</td>
<td>349fd8f4d6e63f0b6b75df4aa17922221f2d7e9e</td>
</tr>
</tbody>
</table>

**Figure 5-8** Using FTK Imager to verify hash values
Reviewing a Case

• General tasks you perform in any computer forensics case:
  – Identify the case requirements
  – Plan your investigation
  – Conduct the investigation
  – Complete the case report
  – Critique the case
Sample Civil Investigation

- Most cases in the corporate environment are considered **low-level investigations**
  - Or noncriminal cases
- Common activities and practices
  - Recover specific evidence
    - Suspect’s Outlook e-mail folder (PST file)
  - Covert surveillance
    - Its use must be well defined in the company policy
    - Risk of civil or criminal liability
  - **Sniffing** tools for data transmissions
Sample Criminal Investigation

- Computer crimes examples
  - Fraud
  - Check fraud
  - Homicides
- Need a warrant to start seizing evidence
  - Limit searching area
Sample Criminal Investigation (continued)

Figure 5-9  Search warrant limits

Cables connecting computers and printers

Location specified in warrant

Must wait for a new warrant before searching the neighboring apartment
Reviewing Background Information for a Case

• Company called Superior Bicycles
  – Specializes in creating new and inventive modes of human-driven transportation
• Two employees, Chris Murphy and Nau Tjeriko, have been missing for several days
• A USB thumb drive has been recovered from Chris’s office with evidence that he had been conducting a side business using company computers
Identifying the Case Requirements

• Identify requirements such as:
  – Nature of the case
  – Suspect’s name
  – Suspect’s activity
  – Suspect’s hardware and software specifications
Planning Your Investigation

- List what you can assume or know
  - Several incidents may or may not be related
  - Suspect’s computer can contain information about the case
  - If someone else has used suspect’s computer
- Make an image of suspect’s computer disk drive
- Analyze forensics copy
Conducting the Investigation: Acquiring Evidence with AccessData FTK

- Functions
  - Extract the image from a bit-stream image file
  - Analyze the image
Figure 5-10  The Refine Case - Default dialog box

Guide to Computer Forensics and Investigations 70
Conducting the Investigation:
Acquiring Evidence with AccessData
FTK (continued)

Figure 5-11 The Evidence Information dialog box
Figure 5-12  The Add Evidence to Case dialog box with image file listed
Figure 5-13  The Case Summary dialog box
Conducting the Investigation: Acquiring Evidence with AccessData FTK (continued)

Figure 5-14  The Processing Files dialog box
Figure 5-15  Selecting files of interest

Guide to Computer Forensics and Investigations 75
Conducting the Investigation: Acquiring Evidence with AccessData FTK (continued)

Figure 5-16 The Create New Bookmark dialog box
Summary

• Digital evidence is anything stored or transmitted on electronic or optical media
• Private sector
  – Contained and controlled area
• Publish right to inspect computer assets policy
• Private and public sectors follow same computing investigation rules
• Criminal cases
  – Require warrants
Summary (continued)

• Protect your safety and health as well as the integrity of the evidence
• Follow guidelines when processing an incident or crime scene
  – Security perimeter
  – Video recording
• As you collect digital evidence, guard against physically destroying or contaminating it
• Forensic hash values verify that data or storage media have not been altered
Summary (continued)

• To analyze computer forensics data, learn to use more than one vendor tool
• You must handle all evidence the same way every time you handle it
• After you determine that an incident scene has digital evidence, identify the digital information or artifacts that can be used as evidence