What is the effect of physical exertion on cognitive performance under various dual-task conditions?

Graduate Athletic Training Program Students:

Tan Le, Ross Sessions, David May

Doctor of Physical Therapy Program Students:

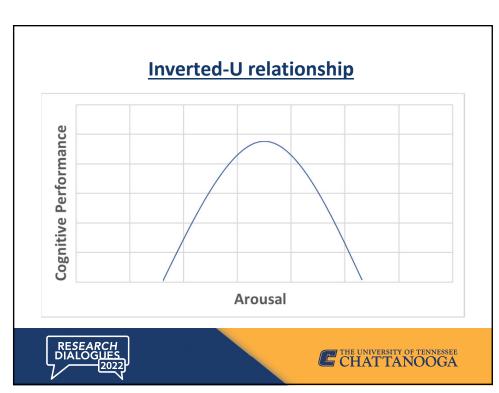
Allan Dunlay, Callie Hackett, Payton Azbell, Savannah Melton Advisors:

Jennifer Hogg, Frank Tudini, Shellie Acocello, Gary Wilkerson

1

Background

- Moderate to vigorous physical activity can improve cognitive performance^{1,4,}
 - A graded exercise protocol has been used to simulate sport physical demand
 - Magnitude of effect may depend on complexity of the cognitive task
- Exertion may enhance arousal, thereby facilitating neural processing efficiency^{2,3,4}
 - Reaction time widely accepted as an indicator of efficient brain function
 - Dual-task condition can quantify integration of cognitive-motor performance
- Physical exertion may shift the inverted-U arousal-performance relationship⁴



Goldilocks Principle

- Insufficient or excessive arousal linked to poor cognitive function
- Physical exertion known to influence sympathetic nervous system activation
- Interaction of cognitive-motor task complexity and exercise unknown⁵

Study Purpose

• To assess the effects of physical exertion on cognitive performance under 3 dual-task conditions imposing various motor demands among young, healthy participants

Hypotheses

 We anticipated that a moderate level of physical exertion would alter the arousal-performance relationship, such that optimum performance would be observed after exercise and that the effect would differ for single- (cognitive) versus dual-tasks (cognitive-motor)

5

Participants

- N=34; 24.03 \pm 1.44 years
 - 17 Males (178.7 ±5.8 cm; 79.7 ±12.1 kg)
 - 17 Females (165.3 ±7.1 cm; 64.9 ±12.2 kg)
- All participants were graduate health professions students
 - Physical Therapy, Occupational Therapy, Athletic Training
 - Avg *Disablement in the Physically Active* score 97.2% (Range 79.7-100%)

• Exclusion criteria:

- Persisting symptoms from a recent lower extremity injury
- Prior history of concussion
- Age greater than 30 years

Procedures: Cognitive & Cognitive-Motor Testing

- Seated (Single-task)
 - Elbows tucked
- Dominant-leg stance (Dual-task)
 - Balancing on preferred kicking leg
- Walking (Dual-task)
 - Self-selected walking pace on a firm surface
- Lateral (Dual-task)
 - Self-selected lateral stepping pace on a firm surface, stepping to the right side

7

Procedure: Flanker Test

Congruent Incongruent

Reaction time (RT) Milliseconds

Efficiency index (EI) = RT + (1- accuracy proportion) x RT

Flanker Conflict Effect (FCE) = Incongruent Avg RT – Congruent Avg RT

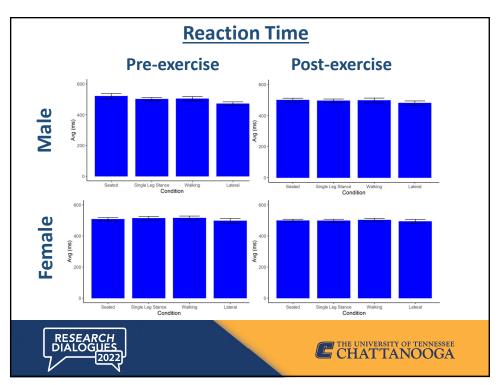
Procedures: Physical Exertion

- 20-minute treadmill running session
 - Warm-up period of less than 5 minutes
 - Self-selected pace to maintain RPE in 15-18 range for final 12 minutes
 - 10-minute rest before post-exertion testing

q

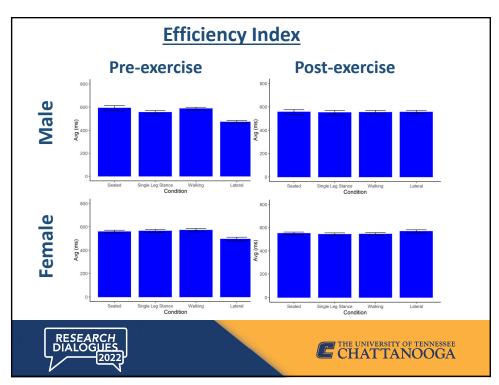
Statistics

- Conducted three 4 x 2 x 2 (condition by time by sex) repeated measures analyses
 - Reaction time
 - Efficiency Index
 - Conflict Effect
- Tukey's Post Hoc testing used as appropriate
- Cohen's d used for interpretation⁶
- $\, \bullet \, A$ priori significance level set at p < .05



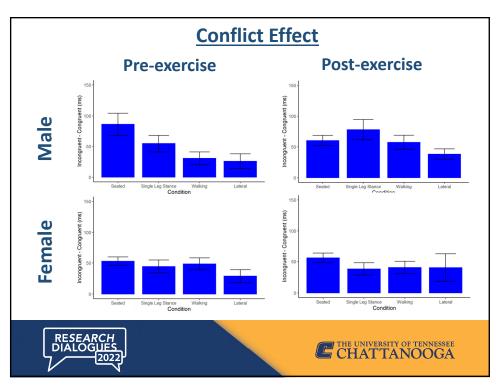
Omnibus Results—Reaction Time

- Reaction Time
 - Three-way interaction was not significant (p = .78; $\eta^2 = .002$)
 - Condition effect significant (p < .001; $\eta^2 = .008$).
 - RT during lateral stepping quicker than during seated (Cohen's d = .68)
 - Between sex effect not significant (p = .66; η^2 = .002)



Omnibus Results—Efficiency Index

- Efficiency Index
 - Three-way interaction was not significant (p = .36; η^2 = .004)
 - Condition effect significant (p < .001; $\eta^2 = .228$)
 - El during lateral stepping quicker than during seated (Cohen's d = 1.73)
 - Between sex effect not significant (p = .87; η^2 = 3.34e-4)
 - Time effect was significant (p= .010; η^2 =.014)
 - <u>Post-testing was quicker than pre-testing (Cohen's d</u> = 0.27)



Omnibus Results—Conflict Effect

- Conflict Effect
 - Three-way interaction was not significant (p = .12; η^2 = .017)
 - Condition effect significant (p = .002; η^2 = 0.046)
 - <u>CE during lateral stepping quicker than</u> during seated (Cohen's d = .64)
 - Between sex effect not significant (p = .46; η^2 = .003)

Discussion

- The time hypothesis is not supported even though the difference between pre and post was significant for EI
 - The difference was 16 ms which is less than the minimally detectable change of 47 ms.⁸
- The second hypothesis is partially supported in that participants tended to have better performance in lateral walking compared to seated and this effect was more pronounced in pre-exercise.

17

Seated reaction time consistently worse than lateral stepping Goldilocks principle Restor Time THE UNIVERSITY OF TENNESSEE TOTAL CONTROL THE UNIVERSITY OF TENNESSEE TOTAL CONTROL THE UNIVERSITY OF TENNESSEE CHATTANOOGA

Fitts' Law

- Inverse relationship between speed and accuracy. 9
 - Exercise worsened accuracy but not reaction time
 - Reaction time (Cohen's d = 0.68) was consistent through pre- and post-exercise
 - Particularly during lateral stepping, accuracy worsened after exertion as represented by EI (Cohen's d = 1.73)

19

Clinical Relevance

- Target appropriate task complexity
- Under exertional conditions accuracy appears to worsen
- Evidence indicates that neurocognitive errors in accuracy are also associated with poor movement quality.¹⁰
- Conflict Effect is prospectively associated with core and lower extremity injury among high school and college players¹¹

Citations

- 1. Heath, Petrella, A., Blazevic, J., Lim, D., Pelletier, A., & Belfry, G. R. (2018). A post-exercise facilitation of executive function is independent of aerobically supported metabolic costs. Neuropsychologia, 120, 65–74. https://doi.org/10.1016/j.neuropsychologia.2018.10.002
- Rajab, Crane, D. E., Middleton, L. E., Robertson, A. D., Hampson, M., & MacIntosh, B. J. (2014). A single session of exercise increases connectivity in sensorimotor-related brain networks: a resting-state fMRI study in young healthy adults. Frontiers in Human Neuroscience, 8, 625–625. https://doi.org/10.3389/fnhum.2014.00625
- 3. Malhotra V. Goel N. Ushadhar, Tripathi Y. Garg R. Exercise and reaction time. Go-Gale-Academia. https://go-gale-com.proxylib.utc.edu/ps/i.do?p=AONE&u=tel_a_utc&id=GALE%7CA471274819&v=2.1&it=r. Published March 26, 2015. Accessed February, 2022. (supports the 2nd main bullet point slide 2)
- 4. Lambourne, K., & Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: A Meta-regression analysis. Brain Research, 1341, 12–24. https://doi.org/10.1016/j.brainres.2010.03.091
- 5. Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87–101. https://doi.org/10.1016/j.brainres.2012.02.068
- 6. Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers
- 7. SSmith M, Tallis J, Miller A, Clarke ND, Guimaräes-Ferreira L, Duncan MJ. The effect of exercise intensity on cognitive performance during short duration treadmill running. J Hum Kinet. 2016;51:27-35. Published 2016 Jul 2. doi:10.1515/hukin-2015-0167
- 8. Wilkerson, G. B., et al. (2020). Wellness Survey Responses and Smartphone App Response Efficiency: Associations With Remote History of Sport-Related Concussion. Perceptual and Motor Skills.
- 9 Fits. (1992). The Information Capacity of the Human Motor System in Controlling the Amplitude of Movement: Original work published 1954 (Vol. 47, pp. 381-391). Journal of Experimental Psychology. General, 121(3), 262-.
- 10 Hogg, J. A., et al. (2022). "Sex Moderates the Relationship between Perceptual-Motor Function and Single-Leg Squatting Mechanics." Journal of Sports Science and Medicine: 104-111.
- 11. Wilkerson, G. B., et al. (2021). "Perceptual-Motor Efficiency and Concussion History Are Prospectively Associated With Injury Occurrences Among High School and Collegiate American Football Players." Orthopaedic Journal of Sports Medicine 9(10).

