Association of Pre-Participation Status with Injury Hazard over the Course of a Football Season

Allison Abell, MS, ATC; Brynja Winnan, MS, ATC; Gary B. Wilkerson, EdD, ATC; Carrie S. Baker, PhD, ATC, Marisa A. Colston, PhD, ATC

BACKGROUND AND PURPOSE

- Overall injury rate in NCAA football is 8.1 injuries per 1000 athlete-exposures (1 exposure = 1 game or 1 practice)
- Strongest predictors of sport injury include injury history² and volume of participation in games³
- Factors such as concussion history and post-injury impairment of neuromuscular control elevate injury risk⁴
- Visumotor reaction time (VMRT) and lumbopelvic muscle endurance appear to be associated with injury risk^{3,5}
- · A prediction model for time to injury provides optimal representation of differences in injury hazard over a season
- The purpose of this study was to determine the extent to which starter status, concussion history, self-rating of function, VMRT, and postural balance predict sprain/strain hazard among college football players.

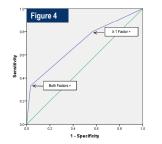
PARTICIPANT CHARACTERISTICS AND PROCEDURES

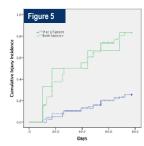
- · Prior to the first practice, potential injury predictors were quantified as part of the pre-participation screening
- 45 NCAA Division I-FCS football athletes: ± vears: 105.5 ±20.16 kg: 186.0 ±6.0 cm
- VMRT quantified (time or number of hits) using D2™ system (Dynavision International, West Chester, OH; Figure 1
- Target buttons arranged in 5 concentric circles; centrally located LCD monitor
 - · Proactive test mode; target buttons illuminated until hit
 - · Reactive test mode; target buttons illuminated 750 ms; recitation of sentences scrolled across LCD monitor
 - Reactive test mode while standing on an unstable surface (BOSU® Balance Trainer, Ashland, OH)
- Unilateral postural stability quantified by smartphone accelerometer (Sway Balance, Sway Medical, Tulsa, OK)
- · 10-s test of ability to minimize postural sway with smartphone secured by strap to position between scapulae
- Single-Leg Balance (SLB) with 45° knee flexion
- Standing Horizontal Trunk Hold (SHT) with 45° knee flexion and 90° hip flexion (Figure 2)
- SLB with heel raised (SLB-HR) with 45° knee flexion and 2.5 cm of heel elevation (Figure 3)
- Root mean square (RMS) of rate of change in body mass acceleration (m/s³) within each plane of motion
 - Anterior-Posterior (A-P), Medial-Lateral (M-L), and Superior-Inferior (S-I)
- · Sports Fitness Index Survey (SFI) quantified effects of past injuries on functional capabilities
- · Previous injuries (including concussion) self-reported
- Injury defined as any upper extremity, core, or lower extremity sprain or strain (wrist, hand, and fingers excluded)
- Evaluation and treatment provided by athletic trainer, with any degree of activity modification required
- Injuries and exposures were tracked using an electronic injury documentation system
- Starter vs. non-starter status determined from records maintained by university athletic program
- · Data analysis procedures for assessment of association between potential predictors and injury occurrence
- Receiver operating characteristic (ROC) analysis used to identify cut-points for binary classification of injury risk
- Logistic regression analysis utilized to develop multivariable injury prediction model
- · Cox regression analysis utilized to assess time to injury difference for players in high-risk vs. low-risk categories

RESULTS

- A total of 17 injuries were sustained by 15 players (2 players sustained 2 injuries); 33% injury incidence (15/45)
- No association of starter status (22/45) with injury occurrence (OR=0.77) or concussion history (OR=0.33)
- ROC analyses demonstrated strongest predictors to be the following:
- Reactive test mode Rings 4-5 Hits, SLB, SHT, SLB-HR, and SFI score (Table 1)
- · Postural sway values were imputed (cohort mean value) for 2 cases, rather than their exclusion from analysis
- Logistic regression analysis identified the best multivariable prediction model, which yielded a 2-factor model
- SLB-HR and Ring 4-5 Hits included in 2-factor prediction model, both factors + vs. 0 or 1 + (Tables 2 & 3, Figure 4)
- Logistic regression model $\chi^2(2)=6.77$; p=.034; Hosmer-Lemeshow $\chi^2(2)=1.37$; p=.504; Nagelkerke R²=.194
- Both factors positive: $\chi^2(1)=7.79$; p=.012; Sensitivity=33%; Specificity=97%; OR=14.50 (90% CI: 2.17, 96.96)
- ≥1 factor positive: $\chi^2(1)$ =2.38; p=.112; Sensitivity=80%; Specificity=43%; OR=3.06 (90% CI: 0.90, 10.39)
- Cox regression analysis of binary categorization (high risk = both factors positive vs. low risk = 0 or 1 factor positive)
- Model x²(2)=13.43; p<.001; HR=6.02 (90% CI: 2.41, 15.03)
 - · Log minus log graph analysis confirmed assumption of proportional hazards for groups
- · Exceptionally good concordance between actual cumulative injury incidence and Cox model for time to injury
 - Solid lines = actual data; Dashed lines = Cox model prediction (Figure 5)

Table 1						
Predictor	Cut-Point	Sensitivity	Specificity	OR	P	Adj OR
Ring 4-5 Hits	≤ 11	67%	60%	3.00	.085	3.13
SLB	≥ .02	73%	50%	2.75	.120	2.30
SHT	≥ .03	40%	73%	1.83	.282	1.48
SLB-HR	≥ .06	47%	80%	3.83	.056	5.22
SFI	≤ 86	73%	40%	1.83	.294	2.34





THE UNIVERSITY OF TENNESSEE UP CHATTANOOGA

Table 2							
2-Factor Model							
Factors	Injury	No Injury	Incidence				
Both +	5	1	83%				
0 or 1	10	29	26%				
Total	15	30	RR = 3.25				

Table 3							
Risk Factors	Injury	No Injury	Incidence				
0	3	13	19%				
1	7	16	30%				
2	5	1	83%				
Total	15	30	33%				

CLINICAL RELEVANCE

- Game exposure (starter) and previous injury were less predictive than slow VMRT and postural instability
- · Reactive mode test required central visual focus, which challenged peripheral visual perception-action response
- SLB-HR test demonstrated greater discriminatory power than SLB test without heel elevated
- $\bullet \ \ \text{Our findings support recent evidence establishing the relevance of neuromechanical coupling to injury } risk^6 \\$
- · Over the course of the season, high-risk players clearly sustained injuries much earlier than low-risk players
- Central-peripheral integration of visual input and highly coordinated neuromuscular control may be critical factors
- Injury risk screening should include tests that assess neuromechanical capabilities, which may identify players who would be most likely to benefit from a risk-reduction intervention designed to address performance deficiencies

REFERENCES

- Hootman JM, Dick R, Agel J. Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. J Ath Train. 2007;42(2):311-319.
- Meeuwisse WH, Tyreman H, Hagel B, Emery C. Dynamic model of etiology in sport injury: the recursive nature of risk and causation. Clin J Sport Med. 2007;17(3):215-219.
- Wilkerson GB, Colston MA. A refined prediction model for core and lower extremity sprains and strains among collegiate football players. J Athl Train. 2015;50(6):643-650.
- Nordström A, Nordström P, Ekstrand J. Sports-related concussion increases the risk of subsequent injury by about 50% in elite male football players. Br J Sports Med. 2014;48(19):1447-1450.
- Lephart SM, Pincivero DM, Giraldo JL, Fu FH. The role of proprioception in the management and rehabilitation of athletic injuries. Am J Sports Med. 1997;25(1):130-137.
- Rio E, Kidgell D, Moseley GL, et al. Tendon neuroplastic training: changing the way we think about tendon rehabilitation: a narrative review. Br J Sports Med. 2016;50(4):209-215.