Reliability and Concurrent Validation of TRAZER® to 3D Motion Capture

Mason W. Briles, MS, ATC; Alyssa H. Johnson, MS, ATC; Jennifer A. Hogg, PhD, ATC; Gary B. Wilkerson, EdD, ATC

BACKGROUND AND PURPOSE

- Efficient neural processing of visuospatial and proprioceptive input appears to be crucial for avoidance of sport injury¹
- o Clinical tests are needed to identify deficiencies found by advanced neuroimaging and electrophysiological tests
- o Virtual reality visual stimuli with body motion tracking may provide an affordable means to acquire relevant data^{2,3}
- 3D motion capture (MoCap) in a laboratory is the gold standard for measurement of human movement parameters
- o A single analysis of only 2 subjects related TRAZER® Sport Simulator metrics to 3D motion capture data4
- Independent evidence of the validity and reliability of metrics derived from this system is currently lacking
- o The purposes of this study were to assess concurrent validity of TRAZER® single-camera data with 3D motion capture system data and to assess test-retest reliability of its whole-body reactive agility (WBRA) metrics

METHODS

- Two cohorts of healthy college-aged individuals were recruited to assess validity and reliability of TRAZER® metrics
- o 13 individuals (24.8 ±3.1 yrs, 170.0 ±7.7 cm, 70.0 ±14.2 kg) participated in the validation study
- o 18 individuals (23.3 ±2.5 yrs, 168.2 ±11.2 cm, 78.2 ±17.8 kg) participated in the reliability study
- o Assessments utilized randomized linear and diagonal movements; 5 repetitions in each of 8 directions (Figures 1-2)
- o Participants performed within 1.75 m x 1.75 m area, facing 40" monitor at a distance of 2.7 m from monitor
- o Proper movement directions guided by random appearance of targets on monitor in front of athlete
- o Movements of 0.88 (linear) to 1.24 m (diagonal) required to deactivate targets; same distances return to center
- Validation assessed by simultaneous collection of TRAZER® data and Vicon® 3D MoCap (Denver. CO)
- o Total Distance, Speed Maximum (Max) and Acceleration (Acc) Max were acquired
- Vicon® 3D MoCap collected at 60 Hz. double the 30 Hz capture rate of the TRAZER® system
- o Reflective adhesive markers placed on S2 spinous process, bilateral heels, and bilateral hallux
- o 3D digital skeleton created using Vicon® Nexus software; only S2 marker used for MoCap tracking
- \circ Paired t-tests compared means (α =.05); validity assessed by interclass (r) and intraclass correlation coefficient (ICC)
- o Standard error of measurement (SEM) calculated from ICC (2,1) for Total Distance, Speed Max, and Acc Max
- o Reliability (test-retest consistency) of WBRA metrics assessed over 3 testing sessions separated by at least 24 hours
- o Total Distance, Speed Max & Avg, Acc Max & Avg, Deceleration (Dec) Max & Avg, and Reaction Time (RT) Avg
- Repeated measures ANOVA used to assess differences among days; post-hoc paired t-tests if needed (α=.05)
- o ICC (2,1) for Total Distance and Max values (Speed, Acc, Dec) and ICC (2,K) for Avg values (Speed, Acc, Dec, RT)

RESULTS

- De Measures of Total Distance, Max Speed, and Max Acc lack absolute agreement between systems (Table 1) ○ Total Distance (t_{12} = 16.26; P < 0.001); Max Speed (t_{12} = 12.38; P < 0.001); Max Acc (t_{12} = 7.80; P < 0.001)
- Agreement between TRAZER® and Vicon® measures analyzed for Left-Front and Left-Back quadrants (Figure 3) o Left SD = 9.5 cm; Back SD = 15.0 cm; Diagonal-Front SD = 8.7 cm; Diagonal-Back SD = 10.9 cm
- Exceptionally strong correlation between measures for Total Distance covered over 40 movements (Figure 4)
- Bland-Altman Plots illustrate mean difference and 95% limits of agreement with Vicon® as criterion (Figures 5-7)
- o Systematic (middle line) and random error for Total Distance, Max Speed, and Max Acc; 95% CI (dashed lines)
- 3-day test-retest ICC values indicated good to excellent agreement, with exception of RT Avg (Table 2)
- o ICC values classified as follows: Excellent ≥ .75; Good .60 .74; Fair .40 .59; Poor < .40⁵
- o 2-day test-retest ICCs (1-2, 1-3, 2-3) good to excellent, with exceptions of RT Avg, Acc Max, and Dec Max

Figure 2 Figure 3 Figure 4 Figure 1 0.2 SD

Table 1	TRAZER [®] Mean (±SD)	Vicon® Mean (±SD)	Difference Mean (±SD)	r	ICC (SEM)
Total Distance (m)	89.46 (±17.85)	108.59 (±24.47)	19.13 (±8.85)	.961	.793 (11.13)
Speed Max (m/s)	1.00 (±0.12)	2.46 (±0.52)	1.46 (±0.43)	.808	.079 (0.50)
Acc Max (m/s²)	4.32 (±0.47)	1.34 (±0.42)	2.98 (±0.66)	090	008 (0.48)

THE UNIVERSITY of TENNESSEE UT CHATTANOOGA

Table 2	Mean (±SD)	Days 1-2-3 ICC (SEM)	Days 1-2 ICC (SEM)	Days 2-3 ICC (SEM)	Days 1-3 ICC (SEM)
Total Distance (m)	81.06 (±6.65)	.745 (3.36)	.794 (3.02)	.761 (3.25)	.683 (3.74)
Speed Avg (m/s)	0.68 (±0.08)	.847 (0.03)	.819 (0.03)	.864 (0.03)	.677 (0.05)
Acc Avg (m/s²)	2.12 (±0.47)	.919 (0.13)	.852 (0.03)	.957 (0.10)	.825 (0.20)
Dec Avg (m/s²)	1.79 (±0.31)	.948 (0.07)	.927 (0.08)	.907 (0.09)	.937 (0.08)
RT Avg (ms)	320 (±50)	.536 (31)	.447 (40)	.493 (40)	.409 (40)
Speed Max (m/s)	0.84 (±0.10)	.654 (0.06)	.665 (0.06)	.559 (0.07)	.725 (0.05)
Acc Max (m/s²)	3.00 (±0.56)	.171 (0.51)	.067 (0.54)	.032 (0.55)	.824 (0.23)
Dec Max* (m/s²)	2.39 (±0.32)	.416 (0.24)	.581 (0.21)	.139 (0.30)	.495 (0.23)

^{* 1} outlier case omitted (>3 SD from mean)

CLINICAL RELEVANCE

- o Lack of close agreement of maximum instantaneous measures acquired at any point of testing is not surprising
- o Differences in Speed Max and Acc Max measures may be due to differing capture rates (Hz) of the two systems
- o Greater precision of Vicon® 8-camera system for 3D quantification of spatial points likely contributed to differences
- Test-retest reliability of averaged TRAZER® measures were substantially greater than that of maximum measures
- Excellent consistency among 3-day measures of Speed Avg, Acc Avg, and Dec Avg, but only fair for RT Avg
- High RT Avg SEM makes day-to-day change assessment impractical; possibly due to brief data collection phase
- Lack of strong concurrent validity between measures from different systems does not adversely affect the clinical utility of repeated TRAZER® measures for documentation of change in an individual's performance capabilities

REFERENCES

- 1. Wilkerson GB, et al. Detection of persisting concussion effects on neuromechanical responsiveness. Med Sci Sports Exerc. 2018;50(9):1750-1756.
- 2. de Albuquerque A, et al. Kinect sensor used as a support tool in clinical analysis. J Biomech. 2012;45:S304
- 3. Mentiplay BF, et al. Reliability and validity of the Microsoft Kinect for evaluating static foot posture. J Foot Ankle Res. 2013;6(14). Available at: http://www.ifootanklesres.com/content/6/1/14
- 4. Nyman E. A comprehensive evaluation of the TRAZER system: verification and validation of measurement constructs. Technical report available from
- 5. Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess. 1994:6(4):284-290