Injury Risk Assessment and Effectiveness of Risk Reduction Training in Female Collegiate Lacrosse Players

Valerie K. Snider, MS, ATC, Gary B. Wilkerson, EdD, ATC, Daniel C. MacLea IV, MS, ATC*

BACKGROUND AND PURPOSE

- The core (i.e., lumbo-pelvic-hip complex) and lower extremity are involved in 70% of injuries in women's lacrosse¹
- Pre-participation identification of injury risk factors is a key consideration for prevention of sprains and strains²
 - Identification of players who possess elevated risk may enhance the effectiveness of preventive interventions
- Reported risk factors include:
 - High game exposure
- Previous injury
- Estimated mass moment of inertia (MMOI)
- Low back dysfunction - Body mass index
- Poor core musculature fatigue resistance
- · Both low back dysfunction and muscle fatigue represent potentially modifiable injury risk factors
- Optimal core muscle endurance is believed to be important for core and lower extremity (LE) injury prevention
- Few studies have assessed core stability training as a means for reducing core and lower extremity injury risk
- The purposes of this study were to evaluate the relative accuracy of different injury risk assessment methods, and the effectiveness of a training program for injury risk reduction among college women's lacrosse players

PARTICIPANTS AND PROCEDURES

- Prospective analysis: 26 NCAA Division I women's lacrosse players who competed in the 2012-13 season
 - Height (1.66 .06 m), Weight (64.17 7.50 kg)
- Retrospective analysis: 17 players on 2012-13 team who also participated for the duration of 2011-12 season
 - Height (1.65 .06 m), Weight (64.70 7.70 kg)
- Potential predictors of core or LE injury quantified at pre-participation physical examination
 - Anthropometric factors: Height, weight, estimated mass moment of inertia (MMOI), body mass index (BMI)
 - Joint function surveys: Foot & Ankle Ability Measure-Sport (FAAM-S), Int. Knee Documentation Comm. (IKDC)
- Measurements obtained before and after 6-week core stability training program (Table 1)
 - Core muscle endurance: Trunk flexion hold (TFH), horizontal trunk hold (HTH), wall sit hold (WSH)
 - Low back dysfunction survey: Oswestry Disability Index (ODI)
- Observation periods: 1) 2011-12 preseason + 16 games; 2) 2012-13 preseason + 8 games (first half of season)
 - Core and LE sprains and strains that resulted in missed practice(s) and/or game(s) (Table 2)
 - Games played (GP) tracked throughout observation periods
- Data analysis: Categorization of high-risk versus low-risk status for maximum prediction accuracy
 - Receiver operating characteristic (ROC) and logistic regression analyses used to develop prediction model
 - Post-training status (immediately preceding season) used as criterion for pre-training risk categorization
 - Prospectively determined ROC cut-points for prediction model components compared to other methods
 - Retrospectively determined ROC cut-points and use of median values to define cut-points
 - Exposure-outcome analyses: sensitivity (Sn), specificity (Sp), relative risk (RR), and odds ratio (OR)
 - Different methods for cut-point determination used to assess both pre- and post-training status

RESULTS

- Prospective 2012-13 observation period:14 core/LE injuries sustained by 11 athletes
- Risk classification based on ROC-derived cut-points for post-training data identified 7 predictors (Table 3)
 - 5-factor prediction model (post-training status) derived from logistic regression analysis (Figure 1)
 - ≥ 3 positive factors: 1) High game exposure, 2) Low WSH, 3) Low TFH 4) Low HTH, 5) High BMI

Vanderbilt University Medical Center, Nashville, TN

Injury Type

LB/SI Sprain/Strain

Hamstring Strain

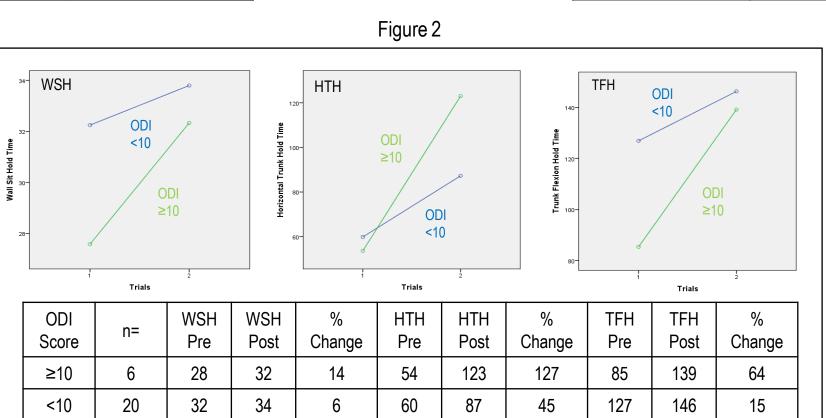
Quadriceps Strain

Hip Flexor Strain

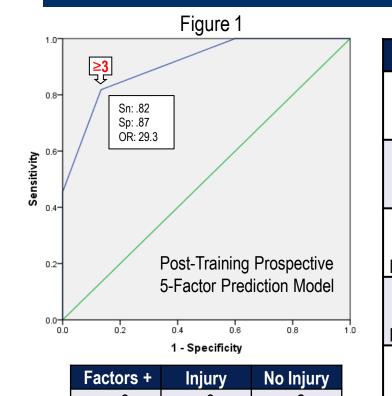
Groin Strain

Knee Sprain

Calf Strain


Ankle Sprain

2011-12 2012-13


- Nagelkerke R²=.665; RR= 6.14 (90% CI: 2.03 18.58); OR= 29.3 (90% CI: 4.87 175.69)
- Alternative cut-points for the 5 predictors derived from other methods compared to prospective model (Table 4)
 - Retrospective 2011-12 injury documentation: 33 core/LE injuries sustained by 14 athletes
- Pre- to post-training improvements in core muscle endurance were evident (Table 5)
 - Magnitude of performance improvement for players with ODI ≥10 versus <10 compared (Figure 2)
- Change in risk status (defined by prospective model) associated with reduced injury incidence (Table 6)

First 3 Second 3 Week-Period Week-Period Plank Series 2x5 Plank Series 2x5 Bird Dogs 2x10 Dead Bugs 2x10 Side-lying Leg Lifts 2x10 Clam Shells 2x10 Ball Hip Lifts 2x10 Cobra's 2x10 Diagonal Chops 2x10 Ball Walk Outs 2x10 Superman's 2x5 Swimmers 2x5

Predictor	Pre- Training	Post- Training	
WSH avg	30 seconds (12.3 SD)	34 seconds (13.9 SD)	
НТН	59 seconds (24.0 SD)	79 seconds (49.5 SD)	
TFH	101 seconds (60.0 SD)	125 seconds (72.8 SD)	

THE UNIVERSITY of TENNESSEE UT CHATTANOGA

11

Total

Model	ВМІ	WSH	HTH	TFH	GP	Sn	Sp	OR
Post-Training Prospective ROC cut-point	≥24.8	≤24	≤75	≤165	≥3	.82	.87	29.3
Pre-Training Prospective ROC cut-point	≥24.8	≤30	≤64	≤130	≥3	1.00	.67	43.9*
Post-Training Prospective Median cut-point	≥23.1	≤33	≤79	≤124	≥3	.64	.40	1.2
Pre-Training Prospective Median cut-point	≥23.1	≤30	≤59	≤100	≥3	.91	.53	11.4
Post-Training Retrospective ROC cut-point	≥24.7	≤32	≤62	≤178	≥7	.73	.53	3.0
Pre-Training Retrospective ROC cut-point	≥24.7	≤33	≤77	≤167	≥7	1.00	.53	26.1*
				* 0.5 a	idded to each	cell of 2x2	table to elimi	nate "0" ce

Table 3								
Predictor	Cut-Pt.	Sn	Sp	RR	OR			
BMI	≥ 24.8	.55	.93	3.26	16.8			
WSH avg	≤ 24	.45	.93	2.78	11.7			
TFH	≤ 165	.91	.40	3.68	6.7			
ODI	≥ 12	.46	.87	2.26	5.4			
GP	≥ 3	.91	.27	2.38	3.6			
MMOI	≥ 205	.46	.80	1.88	3.3			
HTH	≤ 75	.45	.73	1.57	2.3			

13

15

Risk Status	Cases	Injured	Uninjured	% Injured
Remained Low-Risk	8	0	8	0%
High-Risk to Low-Risk	7	2	5	29%
Low-Risk to High-Risk	2	1	1	50%
Remained High-Risk	9	8	1	89%

CLINICAL RELEVANCE

- Core stability training appears to be effective in reducing core and LE injury risk in female lacrosse athletes
- Pre- to post-training improvements were associated with change in injury risk classification
- A procedure is needed to select cut-points for pre-season injury risk classification (prior to practice/game exposure)
- Sensitivity of each risk classification method decreased with improvements in performance capabilities
- Retrospective injury data analysis classified pre-season injury risk status better than use of median values
 - Specificity remained unchanged for injury prediction based on retrospective injury data analysis
 - Specificity improved for injury prediction based on cut-points derived from prospective analysis
- High-risk players who are likely to derive greatest benefit from risk-reduction training need to be identified
- Although ODI score was not included in 5-factor model, its association with elevated risk has been established²
 - Greatest improvements in core muscle endurance demonstrated by those with pre-training ODI score ≥ 10

REFERENCES

- . Dick R, Lincoln AE, Agel J, et al. Descriptive epidemiology of collegiate women's lacrosse injuries: National Collegiate Athletic Association Injury Surveillance System, 1988-1989 through 2003-
- Wilkerson GB, Giles JL, Seibel DK. Prediction of core and lower extremity strains and sprains in college football players: a preliminary study. J Athl Train. 2012;47:273-281.